The McKenzie Institute (www.McKenzieMDT.org) has identified 3 classifications of back and neck pain of mechanical origin. Years of research and clinical application have gone into the McKenzie method of diagnosis and treatment of back, neck and related extremity pain. Mechanical diagnosis and treatment of the spine using the McKenzie method is one of the most widely respected and proven methods of treating back and neck pain.

POSTURAL SYNDROME

Patients with this syndrome are typically under 30 years of age, have sedentary occupations and often lack exercise. Pain symptoms are felt locally, right at or adjacent to the spine. Pain from postural syndrome occurs when prolonged stress is applied to soft tissues (muscles, tendons, ligaments etc.) in and around the spine. This prolonged stress causes the soft tissue to become deformed and, thus, pain is produced. An analogy that we frequently use is the bent finger example.

If you bend your finger backwards away from your palm and hold it at the end of your range of motion, you will eventually begin to feel pain. The pain is relieved upon returning the finger back to its normal resting position. Postural syndrome typically occurs when one assumes poor posture, usually in sitting, but also while standing. There is no associated movement loss at the affected region of the spine. As you may expect, postural correction is the essential component to recovery when one suffers from postural syndrome.

DYSFUNCTION SYNDROME

This syndrome is different from postural syndrome in that people suffering from dysfunction syndrome are usually over 30 years of age, except where trauma is the original cause of their problem. However, similar to postural syndrome, those affected by dysfunction syndrome typically are under-exercised, have poor postural habits and their pain usually is experienced locally at the spine. The affected tissue (can be muscle, tendon, ligament, joint capsule etc.) has adaptively shortened (often due to an old injury) and loses its ability to move through its full range of motion. Pain from dysfunction syndrome is provoked as one attempts full movement in the direction of the limitation.

A useful example to help understand dysfunction is the bent elbow example......If you fracture your elbow and are placed in a cast with the elbow bent you will lose your ability to fully straighten the elbow upon having the cast removed several weeks later. The elbow needs to be stretched to help you regain full range of motion. In cases of dysfunction, the affected area of the spine also needs to be stretched in the direction of limitation.
DERANGEMENT SYNDROME

This is the most common of the McKenzie syndromes and is commonly referred to as a “disc bulge.” Typically, derangements occur in the population aged between 20-55 years old. Symptoms can onset suddenly or gradually and often occur for no apparent reason. Symptoms can be felt locally at the spine or be referred to the buttocks or legs (derangements of the lower back) or in the shoulder blade or arms (derangements of the neck). The symptoms of derangement can present as pain, numbness/tingling, loss of motion and extremity weakness and typically will change based on positioning and movement. Pain intensity from derangement can vary from very mild to severe and there is almost always movement loss within the affected region of the spine. Typically, patients affected by derangement will report that their symptoms are made worse by movement in certain directions and reduced when moving in other directions (mechanical symptom presentation). A thorough evaluation by a licensed McKenzie therapist can help identify the derangement and a mechanical treatment plan can help to reduce and eliminate these conditions.

Information contained in this newsletter is based on teachings of the McKenzie Institute. To learn more, visit them on the web: www.McKenzieMDT.org

For more information about the McKenzie method of treatment and mechanical diagnosis and treatment of back and neck pain, please visit us on the web at:

www.CapitalPT.com

Click on the newsletters tab and view our McKenzie series newsletters.